Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 947
Filter
1.
Article in English | MEDLINE | ID: mdl-38588471

ABSTRACT

Neurological conditions conquer the world; they are the leading cause of disability and the second leading cause of death worldwide, and they appear all around the world in every age group, gender, nationality, and socioeconomic class. Despite the growing evidence of an immense impact of perturbations in neuroenergetics on overall brain function, only little is known about the underlying mechanisms. Especially human insights are sparse, owing to a shortage of physiologically relevant model systems. With this perspective, we aim to explore the key steps and considerations involved in developing an advanced human in vitro model for studying neuroenergetics. We discuss biological and technological strategies to meet the requirements of a predictive model, aiming at providing a guide and inspiration for future in vitro models of neuroenergetics.

2.
Biofabrication ; 16(3)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38574554

ABSTRACT

The anisotropic organization of cells and the extracellular matrix (ECM) is essential for the physiological function of numerous biological tissues, including the myocardium. This organization changes gradually in space and time, during disease progression such as myocardial infarction. The role of mechanical stimuli has been demonstrated to be essential in obtaining, maintaining and de-railing this organization, but the underlying mechanisms are scarcely known. To enable the study of the mechanobiological mechanisms involved,in vitrotechniques able to spatiotemporally control the multiscale tissue mechanical environment are thus necessary. Here, by using light-sensitive materials combined with light-illumination techniques, we fabricated 2D and 3Din vitromodel systems exposing cells to multiscale, spatiotemporally resolved stiffness anisotropies. Specifically, spatial stiffness anisotropies spanning from micron-sized (cellular) to millimeter-sized (tissue) were achieved. Moreover, the light-sensitive materials allowed to introduce the stiffness anisotropies at defined timepoints (hours) after cell seeding, facilitating the study of their temporal effects on cell and tissue orientation. The systems were tested using cardiac fibroblasts (cFBs), which are known to be crucial for the remodeling of anisotropic cardiac tissue. We observed that 2D stiffness micropatterns induced cFBs anisotropic alignment, independent of the stimulus timing, but dependent on the micropattern spacing. cFBs exhibited organized alignment also in response to 3D stiffness macropatterns, dependent on the stimulus timing and temporally followed by (slower) ECM co-alignment. In conclusion, the developed model systems allow improved fundamental understanding of the underlying mechanobiological factors that steer cell and ECM orientation, such as stiffness guidance and boundary constraints.


Subject(s)
Extracellular Matrix , Tissue Engineering , Tissue Engineering/methods , Myocardium , Heart , Fibroblasts
3.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612907

ABSTRACT

Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.


Subject(s)
Fatty Acids, Omega-3 , Geographic Atrophy , Wet Macular Degeneration , Humans , Fatty Acids, Unsaturated/therapeutic use , Fatty Acids , Fatty Acids, Omega-3/therapeutic use
4.
ALTEX ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38641922

ABSTRACT

Animal models have historically been poor preclinical predictors of gastrointestinal (GI) directed therapeutic efficacy and drug-induced GI toxicity. Human stem and primary cell-derived culture systems are a major focus of efforts to create biologically relevant models that enhance preclinical predictive value of intestinal efficacy and toxicity. The inherent variability in stem-cell-based cultures makes development of useful models a challenge; the stochastic nature of stem-cell differentiation interferes with the ability to build and validate reproducible assays that query drug responses and pharmacokinetics. In this study, we aimed to characterize and reduce sources of variability in a complex stem cell-derived intestinal epithelium model, termed RepliGut® Planar, across cells from multiple human donors, cell lots, and passage numbers. Assessment criteria included barrier formation and integrity, gene expression, and cytokine responses. Gene expression and culture metric analyses revealed that controlling cell passage number reduces variability and maximizes physiological relevance of the model. In a case study where passage number was optimized, distinct cytokine responses were observed among four human donors, indicating that biological variability can be detected in cell cultures originating from diverse human sources. These findings highlight key considerations for designing assays that can be applied to additional primary-cell derived systems, as well as establish utility of the RepliGut® Planar platform for robust development of human-predictive drug-response assays.


Animal models are frequently used as tools for studying gastrointestinal (GI) disease, but they poorly replicate the complexities of the human gut limiting the clinical translation of new therapeutics in development. Human stem cell derived models can better recapitulate human GI physiology, but the inherent dynamic nature of stem cells introduces variability in culture performance. We identified sources of variability in the primary stem-cell derived RepliGut® Planar model to develop robust and reliable assays that can improve preclinical therapeutic development for GI disease. Analysis of barrier formation, gene expression, and cytokine responses demonstrated that controlling cell passage number reduces variability and maximizes physiological relevance of the model. These findings highlight key assay design considerations that can be applied to additional primary-cell derived systems. Availability of reliable and physiologically relevant cell-based models can reduce animal testing, improve research accuracy, and make new treatments more relevant and effective for patients.

5.
Cell Rep ; 43(5): 114043, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38642336

ABSTRACT

Bone is highly susceptible to cancer metastasis, and both tumor and bone cells enable tumor invasion through a "vicious cycle" of biochemical signaling. Tumor metastasis into bone also alters biophysical cues to both tumor and bone cells, which are highly sensitive to their mechanical environment. However, the mechanobiological feedback between these cells that perpetuate this cycle has not been studied. Here, we develop highly advanced in vitro and computational models to provide an advanced understanding of how tumor growth is regulated by the synergistic influence of tumor-bone cell signaling and mechanobiological cues. In particular, we develop a multicellular healthy and metastatic bone model that can account for physiological mechanical signals within a custom bioreactor. These models successfully recapitulated mineralization, mechanobiological responses, osteolysis, and metastatic activity. Ultimately, we demonstrate that mechanical stimulus provided protective effects against tumor-induced osteolysis, confirming the importance of mechanobiological factors in bone metastasis development.

6.
Article in English | MEDLINE | ID: mdl-38619704

ABSTRACT

As the conversion rate of preclinical studies for cancer treatment is low, user-friendly models that mimic the pathological microenvironment and drug intake with high throughput are scarce. Animal models are key, but an alternative to reduce their use would be valuable. Vascularized tumor-on-chip models combine great versatility with scalable throughput and are easy to use. Several strategies to integrate both tumor and vascular compartments have been developed, but few have been used to assess drug delivery. Permeability, intra/extravasation, and free drug circulation are often evaluated, but imperfectly recapitulate the processes at stake. Indeed, tumor targeting and chemoresistance bypass must be investigated to design promising cancer therapeutics. In vitro models that would help the development of drug delivery systems (DDS) are thus needed. They would allow selecting good candidates before animal studies based on rational criteria such as drug accumulation, diffusion in the tumor, and potency, as well as absence of side damage. In this review, we focus on vascularized tumor models. First, we detail their fabrication, and especially the materials, cell types, and coculture used. Then, the different strategies of vascularization are described along with their classical applications in intra/extravasation or free drug assessment. Finally, current trends in DDS for cancer are discussed with an overview of the current efforts in the domain.

7.
Front Bioeng Biotechnol ; 12: 1346660, 2024.
Article in English | MEDLINE | ID: mdl-38646009

ABSTRACT

Several diseases affect the alveoli, and the efficacy of medical treatments and pharmaceutical therapies is hampered by the lack of pre-clinical models able to recreate in vitro the diseases. Microfluidic devices, mimicking the key structural and compositional features of the alveoli, offer several advantages to medium and high-throughput analysis of new candidate therapies. Here, we developed an alveolus-on-a-chip recapitulating the microanatomy of the physiological tissue by including the epithelium, the fibrous interstitial layer and the capillary endothelium. A PDMS device was obtained assembling a top layer and a bottom layer obtained by replica molding. A polycaprolactone/gelatin (PCL-Gel) electrospun membrane was included within the two layers supporting the seeding of 3 cell phenotypes. Epithelial cells were grown on a fibroblast-laden collagen hydrogel located on the top side of the PCL-Gel mats while endothelial cells were seeded on the basolateral side of the membrane. The innovative design of the microfluidic device allows to replicate both cell-cell and cell-extracellular matrix interactions according to the in vivo cell arrangement along with the establishment of physiologically relevant air-liquid interface conditions. Indeed, high cell viability was confirmed for up to 10 days and the formation of a tight endothelial and epithelial barrier was assessed by immunofluorescence assays.

8.
Article in English | MEDLINE | ID: mdl-38587434

ABSTRACT

Dental implants have been clinically used for almost five decades with high success rates. In vitro research models used in implant dentistry are limited to two-dimensional experiments, which are reproducible and well adapted to evaluate a single parameter but do not reproduce the complexity of clinical settings. On the contrary, the in vivo research models using animals offer similar histological and anatomical features to humans, and tissue healing can be close to a clinical situation, but those models are usually accompanied with ethical concerns, and their outcomes could not be extrapolated to humans because of interspecies variabilities. This makes the development of novel in vitro models that recapitulate physiological events occurring during dental implant placement of particular interest for current research in dentistry. Also, such models could be challenged by setting a pathological environment (peri-implantitis) to better understand the disease and eventually serve as a platform to evaluate novel treatment modalities. The aim of this systematic literature review was to cover all the in vitro three-dimensional (3D) complex models available for research in implant dentistry. To accomplish this, a comprehensive search of the literature present on Scopus and PubMed databases was done using specific keywords, as well as inclusion/exclusion criteria. Out of 1334 articles found, we have finally included 27 articles in this review with publication dates between 2001 and 2022. In those articles, the 3D models were designed to study tissue-implant interface behavior in bone or gingival tissue. The articles focused on simulating implant integration, evaluating the effect of different conditions on implant integration, or developing an infection model for the implant integration process. The methods used involved implant material and cells organized in a specific 3D structure. The 3D models developed were able to simulate the process of dental implant osseo- and soft tissue integration and lead to results comparable with conventional in vitro and in vivo models. A relatively limited number of articles were obtained, which indicates that this is an emerging field, highly dependent on progresses made in biotechnologies and tissue engineering, and that further investigation is needed to enhance these 3D in vitro models.

9.
Adv Biol (Weinh) ; : e2300487, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581078

ABSTRACT

Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.

10.
Part Fibre Toxicol ; 21(1): 16, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509617

ABSTRACT

BACKGROUND: Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS: In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1ß release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1ß release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS: Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.


Subject(s)
Cathepsin B , Lipopolysaccharides , Male , Humans , Mice , Animals , Cathepsin B/metabolism , Cathepsin B/pharmacology , Lipopolysaccharides/pharmacology , High-Throughput Screening Assays , Inflammation/chemically induced , Inflammation/metabolism , Macrophages , Cytokines/metabolism , Interleukin-1beta/metabolism
11.
Trends Biotechnol ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38493050

ABSTRACT

In bone tissue engineering (TE) and regeneration, miniaturized, (sub)millimeter-sized bone models have become a popular trend since they bring about physiological biomimicry, precise orchestration of concurrent stimuli, and compatibility with high-throughput setups and high-content imaging. They also allow efficient use of cells, reagents, materials, and energy. In this review, we describe the state of the art of miniaturized in vitro bone models, or 'mini-bones', describing these models based on their characteristics of (multi)cellularity and engineered extracellular matrix (ECM), and elaborating on miniaturization approaches and fabrication techniques. We analyze the performance of 'mini-bone' models according to their applications for studying basic bone biology or as regeneration models, disease models, and screening platforms, and provide an outlook on future trends, challenges, and opportunities.

12.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542525

ABSTRACT

Among the many lysosomal storage disorders (LSDs) that would benefit from the establishment of novel cell models, either patient-derived or genetically engineered, is mucopolysaccharidosis type II (MPS II). Here, we present our results on the establishment and characterization of two MPS II patient-derived stem cell line(s) from deciduous baby teeth. To the best of our knowledge, this is the first time a stem cell population has been isolated from LSD patient samples obtained from the dental pulp. Taking into account our results on the molecular and biochemical characterization of those cells and the fact that they exhibit visible and measurable disease phenotypes, we consider these cells may qualify as a valuable disease model, which may be useful for both pathophysiological assessments and in vitro screenings. Ultimately, we believe that patient-derived dental pulp stem cells (DPSCs), particularly those isolated from human exfoliated deciduous teeth (SHEDs), may represent a feasible alternative to induced pluripotent stem cells (iPSCs) in many labs with standard cell culture conditions and limited (human and economic) resources.


Subject(s)
Lysosomal Storage Diseases , Mucopolysaccharidosis II , Humans , Stem Cells , Cell Line , Tooth, Deciduous , Lysosomes , Dental Pulp , Cell Differentiation/physiology , Cell Proliferation
13.
Adv Drug Deliv Rev ; 208: 115295, 2024 May.
Article in English | MEDLINE | ID: mdl-38527625

ABSTRACT

Melanoma, the deadliest form of skin cancer, poses a significant clinical challenge for the development of effective treatments. Conventional in vivo animal studies have shown limited translational relevance to humans, raising strength to pre-clinical models for melanoma research. This review provides an in-depth analysis of alternative pre-clinical models including in vitro and ex vivo platforms such as reconstructed skin, spheroids, organoids, organotypic models, skin-on-a-chip, and bioprinting. Through a comprehensive analysis, the specific attributes, advantages, and limitations of each model are elucidated. It discusses the points related to the uniqueness advantages, from capturing complex interactions between melanoma cells and their microenvironment to enabling high-throughput drug screening and personalized medicine approaches. This review is structured covering firstly the roadmap to identify the co-occurrence of discovering new melanoma treatments and the development of its models, secondly it covers a comparative between the most used models followed by a section discussing each of them: the in vitro and ex vivo models. It intends to serve as an asset for researchers of melanoma field and clinicians involved in melanoma therapy, offering insights into the diverse preclinical models available for optimizing their integration into the translational pipeline.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Humans , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Organoids , High-Throughput Screening Assays , Tumor Microenvironment
14.
Ocul Surf ; 32: 154-165, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38490475

ABSTRACT

Meibomian gland dysfunction (MGD) is a chronic abnormality of the Meibomian glands (MGs) that is recognized as the leading cause of evaporative dry eye worldwide. Despite its prevalence, however, the pathophysiology of MGD remains elusive, and effective disease management continues to be a challenge. In the past 50 years, different models have been developed to illustrate the pathophysiological nature of MGD and the underlying disease mechanisms. An understanding of these models is crucial if researchers are to select an appropriate model to address specific questions related to MGD and to develop new treatments. Here, we summarize the various models of MGD, discuss their applications and limitations, and provide perspectives for future studies in the field.

15.
Sci Rep ; 14(1): 6948, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38521816

ABSTRACT

Catecholamines norepinephrine and dopamine have been implicated in numerous physiological processes within the central nervous system. Emerging evidence has highlighted the importance of tightly regulated monoamine levels for placental functions and fetal development. However, the complexities of synthesis, release, and regulation of catecholamines in the fetoplacental unit have not been fully unraveled. In this study, we investigated the expression of enzymes and transporters involved in synthesis, degradation, and transport of norepinephrine and dopamine in the human placenta and rat fetoplacental unit. Quantitative PCR and Western blot analyses were performed in early-to-late gestation in humans (first trimester vs. term placenta) and mid-to-late gestation in rats (placenta and fetal brain, intestines, liver, lungs, and heart). In addition, we analyzed the gene expression patterns in isolated primary trophoblast cells from the human placenta and placenta-derived cell lines (HRP-1, BeWo, JEG-3). In both human and rat placentas, the study identifies the presence of only PNMT, COMT, and NET at the mRNA and protein levels, with the expression of PNMT and NET showing gestational age dependency. On the other hand, rat fetal tissues consistently express the catecholamine pathway genes, revealing distinct developmental expression patterns. Lastly, we report significant transcriptional profile variations in different placental cell models, emphasizing the importance of careful model selection for catecholamine metabolism/transport studies. Collectively, integrating findings from humans and rats enhances our understanding of the dynamic regulatory mechanisms that underlie catecholamine dynamics during pregnancy. We identified similar patterns in both species across gestation, suggesting conserved molecular mechanisms and potentially shedding light on shared biological processes influencing placental development.


Subject(s)
Catecholamines , Dopamine , Pregnancy , Rats , Humans , Animals , Female , Cell Line, Tumor , Placenta , Norepinephrine
16.
Polymers (Basel) ; 16(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38475301

ABSTRACT

Cancer is a leading cause of death worldwide and results in nearly 10 million deaths each year. The global economic burden of cancer from 2020 to 2050 is estimated to be USD 25.2 trillion. The spread of cancer to distant organs through metastasis is the leading cause of death due to cancer. However, as of today, there is no cure for metastasis. Tissue engineering is a promising field for regenerative medicine that is likely to be able to provide rehabilitation procedures to patients who have undergone surgeries, such as mastectomy and other reconstructive procedures. Another important use of tissue engineering has emerged recently that involves the development of realistic and robust in vitro models of cancer metastasis, to aid in drug discovery and new metastasis therapeutics, as well as evaluate cancer biology at metastasis. This review covers the current studies in developing tissue-engineered metastasis structures. This article reports recent developments in in vitro models for breast, prostate, colon, and pancreatic cancer. The review also identifies challenges and opportunities in the use of tissue engineering toward new, clinically relevant therapies that aim to reduce the cancer burden.

17.
Curr Med Chem ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38468515

ABSTRACT

The burden of increasing cancer incidence among the population, and, in particular, of prostate cancer in men living in highly developed countries, brings with it, on one hand, the need for new devices that allow a faster and earlier diagnosis, ideally in a non-invasive way and with low consumption of expensive reagents, and on the other the need for the assessment of new in vitro models that allow a more reliable assessment of cancer features, including its microenvironment and sensibility to different drugs. At the crossroads of these features, microfluidic devices are found. These, taking advantage of the chemical-physical properties of cells and human samples, have demonstrated great sensitivity and sensibility at an on-chip scale. Many fields of biomedical sciences have tried to exploit all their potentialities: from the detection of antigens in the early phases of the disease (when they are very low concentrated, but the treatment is more effective) to isolation and characterization of circulating tumor cells. However, the development of in vitro 3D models to better assess and comprehend the fundamental dynamics of tumor microenvironment and metastasis using 3D bioprinting techniques. The aim of the present review is to describe the potential of these two different cutting-edge technologies for the detection and treatment of prostate cancer, in the perspective of a possible future combination of them that allows scientists to fill the gaps present in the field to improve patient care and treatment.

18.
Expert Opin Drug Metab Toxicol ; : 1-13, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38465923

ABSTRACT

INTRODUCTION: Drug induced Liver-Injury (DILI) is a leading cause of drug attrition and complex in vitro models (CIVMs), including three dimensional (3D) spheroids, 3D bio printed tissues and flow-based systems, could improve preclinical prediction. Although CIVMs have demonstrated good sensitivity and specificity in DILI detection their adoption remains limited. AREAS COVERED: This article describes DILI, the challenges with its prediction and the current strategies and models that are being used. It reviews data from industry-FDA collaborations and strategic partnerships and finishes with an outlook of CIVMs in preclinical toxicity testing. Literature searches were performed using PubMed and Google Scholar while product information was collected from manufacturer websites. EXPERT OPINION: Liver CIVMs are promising models for predicting DILI although, a decade after their introduction, routine use by the pharmaceutical industry is limited. To accelerate their adoption, several industry-regulator-developer partnerships or consortia have been established to guide the development and qualification. Beyond this, liver CIVMs should continue evolving to capture greater immunological mimicry while partnering with computational approaches to deliver systems that change the paradigm of predicting DILI.

19.
Foods ; 13(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38397541

ABSTRACT

Mycotoxins are secondary metabolites produced by filamentous fungi associated with a variety of acute and chronic foodborne diseases. Current toxicology studies mainly rely on monolayer cell cultures and animal models, which are undeniably affected by several limitations. To bridge the gap between the current in vitro toxicology approach and the in vivo predictability of the data, we here investigated the cytotoxic effects induced by the mycotoxins sterigmatocystin (STE), ochratoxin A (OTA) and patulin (PAT) on different 2D and 3D cell cultures. We focused on human tumours (neuroblastoma SH-SY5Y cells and epithelial breast cancer MDA-MB-213 cells) and healthy cells (bone marrow-derived mesenchymal stem cells, BM-MSC, and umbilical vein endothelial cells, HUVECs). The cytotoxicity of STE, OTA, and PAT was determined after 24, 48 and 72 h of exposure using an ATP assay in both culture models. Three-dimensional spheroids' morphology was also analysed using the MATLAB-based open source software AnaSP 1.4 version. Our results highlight how each cell line and different culture models showed specific sensitivities, reinforcing the importance of using more complex models for toxicology studies and a multiple cell line approach for an improved and more comprehensive risk assessment.

20.
Biomaterials ; 306: 122482, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301325

ABSTRACT

One of the hurdles to the development of new anticancer therapies is the lack of in vitro models which faithfully reproduce the in vivo tumor microenvironment (TME). Understanding the dynamic relationships between the components of the TME in a controllable, scalable, and reliable setting would indeed support the discovery of biological targets impacting cancer diagnosis and therapy. Cancer research is increasingly shifting from traditional two-dimensional (2D) cell culture toward three-dimensional (3D) culture models, which have been demonstrated to increase the significance and predictive value of in vitro data. In this scenario, microphysiological systems (also known as organs-on-chip) have emerged as a relevant technological platform enabling more predictive investigation of cell-cell and cell-ECM interplay in cancer, attracting a significant research effort in the last years. This review illustrates one decade of progress in the field of tumor-microenvironment-on-chip (TMOC) approaches, exploiting either cell-laden microfluidic chambers or microfluidic confined tumor spheroids to model the TME. TMOCs have been designed to recapitulate several aspects of the TME, including tumor cells, the tumor-associated stroma, the immune system, and the vascular component. Significantly, the last aspect has emerged for its pivotal role in orchestrating cellular interactions and modulating drug pharmacokinetics on-chip. A further advancement has been represented by integration of TMOCs into multi-organ microphysiological systems, with the final aim to follow the metastatic cascade to target organs and to study the effects of chemotherapies at a systemic level. We highlight that the increased degree of complexity achieved by the most advanced TMOC models has enabled scientists to shed new light on the role of microenvironmental factors in tumor progression, metastatic cascade, and response to drugs.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , Microfluidics , Tumor Microenvironment , Cell Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...